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Abstract 

Reducing a neural network's complexity improves the ability of the network to be ap- 

plied to future examples. Like an overfitted regression function, neural networks may miss 

their target because of the excessive degrees of freedom stored up in unnecessary parame- 

ters. Over the past decade, the subject of pruning networks has produced non-statistical 

algorithms like Skeletonization, Optimal Brain Damage, and Optimal Brain Surgery as 

methods to remove connections with the least salience. There are conflicting views as to 

whether more than one parameter can be removed at a time. The methods proposed in 

this research use statistical multiple comparison procedures to remove multiple parame- 

ters in the model when no significant difference exists. While computationally intensive, 

the Tukey-Kramer method compares well with Optimal Brain Surgery in pruning and net- 

work performance. When the Tukey-Kramer method has inefficient sampling requirements, 

Weibull distribution theory alleviates the computational burden of bootstrap resampling 

with single sample analysis, while maintaning comparable network performance. 

xn 



Multiple Comparison Pruning of Neural Networks 

/.   Introduction 

When presented with a data set for analysis, the engineer or statistician are both 

in the position similar to an artist presented with a canvas and palette of oils: the final 

representation is dependent upon the experience of the craftsman. Presuming that the 

data set contains the necessary information, either analyst would employ their appropri- 

ate algorithms "to extract and organize that information to obtain an accurate prediction 

rule" (12). It is the purpose of this research to observe the differing approaches of the engi- 

neer and statistician, and incorporate appropriate statistical discipline to the modification 

of neural networks to improve their accuracy. 

Mathematics and statistics have supplied traditional data analysis techniques pre- 

dating the computer, but the computer is not to be ignored. As the engineer has found 

the tool indispensable for machine learning and pattern recognition, so has the statistician 

refined the tools for classification and regression. Just as newer statistical techniques 

arise in principal component analysis, the engineer (connectionist) generates a stir in new 

developments of artificial intelligence and neural networks. 

Unfortunately there is a lot of second-guessing between engineers and statisticians as 

to the effectiveness of the other's approach. Though many authors bridge the divide (10, 22, 

45, 50, 62), Cherkassky (12) suggests that the differing fields achieve progress independently 

of one another. Such a view would imply that researchers of the various disciplines are 

entrenched or ill read. However, when the methodological developments are sufficiently 

diverse, the independent approaches that produce comparative performance in predictive 

capabilities only further reinforce the extractability of the underlying information within 

a data set. Both disciplines can value this fortune of order. 

Cherkassky (12) recalls two great quotes from prominent statisticians to put per- 

spective on the grandeur and limitation of statistics. The neural network community must 

consider B. Efron's quote, "Statistics has been the most successful information science, 



and those who ignore it are condemned to reinvent it." The statistical community must 

consider R.A. Fisher's quote, "It is the scientist, not the statistician, who constructs the 

structural model. It is the role of the statistician to study the inferential limitations ofthat 

model under various uncertainty mechanisms." Neither community can claim superiority 

in methodology, nor neither can afford to overestimate their role in information processing. 

As for the usefulness of artificial neural networks for statistical inference, the connectionist 

develops the network to address a specific problem with perhaps a large data set, a complex 

architecture, and a goal to produce adequate generalization—a measure of the network's 

ability to perform well on future examples (45). In contrast, the statistical theory would 

require less data within a given model to produce interpretability. In either case, successful 

inference is achieved as the data set grows, so the real criteria of appropriateness lies in 

performance on real, perhaps ill-posed problems with finite, maybe sparse data sets. "The 

best method should conform to the properties of the data at hand (12)." 

Perhaps the greatest melding of the disciplines is occurring in network pruning, be- 

cause the lessons of overfitted regressions apply to the neural networks as well. Overfitted 

networks pick-up the idiosyncrasies of the training data set, adversely affecting the capa- 

bility to generalize (44). So, even though neural networks' overt size can be the key to 

quick learning, the truth of the Principle of Parsimony 

It may pay not to try to describe in the analysis the complexities that are really 
present in the situation (56) 

has led the neural network community to search for simpler models. Employing the smallest 

possible number of parameters for adequate representation benefits the generalization goal 

of the network by removing the superfluous parameters that permit too much memorization 

of the training set (23). Thus, pruning algorithms have been developed to trim large, quick 

learning networks into sufficient, minimal networks. Typical algorithms reduce an oversized 

network in a step-by-step fashion similar to a statistical backward elimination procedure. 

Conversely, networks can also be built to an appropriate complexity using forward selection 

techniques analogous to those in statistics. 



1.1 Scope 

This research seeks to review the established links between statistical hypothesis 

testing and neural network pruning, and develop simpler hypothesis testing using the 

range, studentized range (24), Pareto (8, 37, 48), and Weibull (1) distributions for the 

pruning of neural network's features and architecture. 

1.2 Dissertation Organization 

Given the range of contributing resources, the table of symbols attempts to bridge the 

various symbol assignments made by different disciplines. In Chapter II, this dissertation 

presents background information on topics relevant to the research problem and related 

work that has already been accomplished in these areas. Chapter III describes the devel- 

opment of multiple comparison approach to neural network pruning and an analysis of the 

appropriateness of this new approach. Finally, Chapter IV summarizes the experimental 

results of multiple comparison pruning that lead to the conclusions of Chapter V. 



77.   Background 

Neural networks have existed in nature for an exceptionally long time—since early animal 

life. However, the history of artificial neural networks is limited to the twentieth century. 

With the interchange of ideas between life scientists and engineers, the development of 

machines influenced by the theories of psychology and biology led way to Rosenblatt's 

perceptron (4, 46) in the late 1950s and the field of artificial neural networks in the mid- 

1980s (45). With these mathematical techniques established, artificial neural networks no 

longer required the original biological motivation. Although many authors will relate the 

machine to a biological counterpart, the machine is nothing more than a mathematical 

algorithm with computations activated by logic rules. The dynamics within the system 

appear to reflect intelligence, but only if the algorithm is prepared intelligently. 

Beyond the inception of the perceptron, neural network methods continue to be 

developed, compared, and contrasted. Inasmuch as network algorithm preparation affects 

capability, the method of network construction is also under scrutiny. As mentioned in 

Chapter I, the scope of this effort is the application of untapped statistical tools for network 

size reduction. Rather than survey the wide field of neural network methods, a review of the 

feed-forward neural network will define some of the general terms that all neural networks 

share. 

Neural networks are a wide class of flexible nonlinear models that are used for var- 

ious purposes (regression, discrimination, data reduction, and nonlinear dynamical sys- 

tems) (50). This dissertation is focused primarily with neural networks as predictors 

(regression, discrimination). 

Figure 1 depicts the construction of the feed-forward neural network (9, 45) which 

is scaleable in complexity. The feed-forward network consists of hidden and output layers 

of units (also referred to as nodes, neurons, or perceptrons) and a layer of inputs. A bias 

is connected to each unit to provide an activation constant. One-way connections have 

associated weights that multiply the signal from the bias, inputs, and hidden units to 

their forward units. Connectivity is the description of how the lower layers and bias are 

connected to the upper layers. Full connectivity describes a network where each lower layer 



Output layer 

Hidden 
layer(s) 

Input layer 

Figure 1.      Feed-Forward Neural Network 

unit is connected to each unit in the next layer. Reduced connectivity implies less than 

complete connections between subsequent layers. Network architecture is the description 

of existing layers, associated units and connectivity. The complexity of the network refers 

to the number of connections (free parameters) as a result of the network architecture. 

Equation 1 is the general form of the network output 

Vk = fo wx) + >    fflVfl; Jok + J2Wfka3 (1) 
i=i 

where 

«i = h   4i} 

f0 is the activation function for the output layer, fh is the activation function of the hidden 

layer, and aj is the output of the jth hidden node which in turn becomes one of the inputs 

to the output layer. The network operates like a discrete thresholding device with each 

forward unit summing its weighted inputs and bias as an input to the unit's activation 

function, fh or f0. The activation function can be logistic sigmoid, hyperbolic tangent, or 

step. Otherwise, a linear activation function can be used to merely forward the sum of the 

weighted inputs. 

The network weights w are randomly initialized with care so as to avoid saturating 

the hidden layer activation function.   From a training data set X, the weights are de- 



termined (learned) using an iterative algorithm designed to minimize an error function, 

£. A commonly used training error function involves the sum of square error of the pre- 

dicted versus target value. To facilitate computational analysis, the network weights are 

reorganized into a vector data structure as P single scripted elements of weight vector 

w = [wi u>2 ■ • • wp]. The gradient of £(w) with respect to w describes the change in £(w) 

as w changes at a point w. Finding w so that V£(w) = 0 reveals a stationary point of 

£(w). Since the step function is not continuously differentiable, it is not acceptable as an 

activation function during learning. Widrow-Hoff's (4, 63) gradient descent is a classical 

weight update rule for a given learning rate n where for the pth weight 

dS 
Wp<-wp-r) 

dwp 

The weight updates represent the back-propagation of information into the network. 

The algorithm can either update the weights on-line after each training data vector x G X 

or after the batch of training vectors in X passes through the network. On-line training has 

the advantage of learning from every experience, faster convergence per data passed, and 

more likely avoiding local minima—but at a computational price. The iterations (epochs) 

continue until the stopping rule is achieved. The stopping rule may be tied to the training 

error goal, generalization on a validation set, or an order of epochs considered optimal for 

generalization (61). 

Complexity, learning rates, training error and generalization have become compara- 

tive measures for neural networks in response to complex real-world problems that force 

network sizing growth to achieve successful neural network learning (33). Large neural 

networks are quick learners but may be less than adequate generalizers (performing poorly 

on future examples). Overfitted networks acquire the temperament of the training data 

set, negatively affecting the network's ability to generalize. This coincides with how statis- 

tical models are capable of success and failure in predicting future responses from empirical 

data by fitting or overfitting the data. Statistical relations undergo model reduction to 

avoid overfitting. Similarly, neural network complexity reduction prevents memorization. 



So, even though neural network size can be the key to quick learning, a simpler model that 

fits the data may perform better as a predictor of outcomes for future examples. Model 

simplification involves removing nonessential weights, nodes, or features that may allow 

for better generalization. Thus, pruning algorithms have been developed to trim large, 

quick learning networks into sufficient, minimal networks. Network pruners like Optimal 

Brain Surgery (OBS) (25) improve generalization by trimming the excess weights from the 

network. To speed the pruning process, the results of Tukey (28, 40, 56, 57), Kramer (31) 

and Pareto (37, 48, 8) provide a statistical bridge between inference and decision theory 

for multiple comparison pruning. This proactive approach contrasts the more passive ap- 

proach of model comparisons by Golden (22), Voung (59), and White (62) applying Wald 

and Wilks' mathematical methods for statistical inference on the suitability of an artificial 

neural network. The following sections discuss the theory used by the various pruning 

methods. 

2.1    Statistical Inference 

A review of the mathematical methods for statistical inference on the suitability of 

an artificial neural network includes the works of Efron (18), Wald (60), and Wilks (64) as 

applied by Golden (22), Paass (41), Voung (59), White (62). The theory is presented in 

this section and applications will be discussed in Section 2.3. Multiple comparison pruning 

will involve the works of Tukey (28, 40, 56, 57), Kramer (31) and Pareto (8, 37, 48) and 

the theory and application will be discussed in Chapter III. 

2.1.1 Wilks Generalized Likelihood Ratio Test. The Wilks Generalized Likelihood 

Ratio Test (GLRT) procedure involves fitting the response function with both a full model 

of P parameters and a reduced model of M parameters, where M < P. Both models 

possess a model deviance that compares the log-likelihood of each fitted model to the log- 

likelihood of a perfectly fitted 'iV' model with the number of parameters equal to N, the 

number of observations (40). The test investigates whether the full and reduced model 

deviances are significantly different. Since both model deviances have the 'JV' model in 

common, only the likelihood values of the full and reduced model are necessary to complete 



Neyman and Pearson's likelihood ratio statistic A from a random sample X 

lub 
N 

x     WW) 
w€«0n

f(x^w) 
£«(W) lubfL     w. 

where 

ft0    =    {W G 8^ : Wit; = 0,    i = l,---P-M,    i>j=>ki>kj}. 

Thus, the likelihood values are found by obtaining the maximum likelihood estimate (MLE) 

of the parameters for each model, and evaluating the respective likelihood functions. Wilks 

developed the GLRT based upon the \2 distribution's relevance as put forth in Wilks 

Theorem (64): 

If a population with a variate x is distributed according to the probability 
function f (x, Wi, • • ■ , Wp), such that optimum estimates u>i of Wi exist which 
are distributed in large samples according to the probability density function 

(2TT)-£ 

where <j> is of order JV"; then when the null hypothesis H : Wi = W0i, for 
»' = M + i,--- ,P, is true, the distribution of X2= -2 log A is, except for terms of 
order N~i, distributed like %2 with P - M degrees of freedom. 
Note: The norm |»| results in a scalar independent of i and j. 

In testing a full and reduced model, all W0i = 0. So the X2 test statistic is -2log of 

the ratio of likelihood values, or simply the difference in the two model deviances. If the 

test statistic is less than the critical value Xp_M> t^iat *s ^e cm S(luare distribution with 

r = P — M degrees of freedom at a specified significance level, then fail to reject that the 

null hypothesis H is true. 

The application of the GLRT on neural networks includes testing the null hypothesis 

that a particular input has no affect on the network performance, that is all of the connec- 



tion weights of an input converge to zero as the sample size (training data) increases (22). 

In other words, given a full model, the reduced model eliminates the questionable input 

and trains consistent with the full model. A GLRT between the full and reduced models 

provides a decision as to the significance of the input in question. GLRT applications are 

further discussed in Section 2.3. 

2.1.2 Wald Test. Wilks found the limit distribution of the test statistic, A, to 

be Xr if tne hypothesis to be tested was true. As a follow-up to Wilks GLRT's limiting 

central %2 distribution under the null hypothesis, Wald proposed a limiting noncentral x2 

distribution under sequences of local alternatives (59). Wald (60) concluded the following: 

If the true parameter point W is not an element of Q0, the distribution of the 
statistic -2 log A approaches the distribution of a sum of noncentral squares 

U2 = u\ + ■ ■ ■ + u2
T 

where the variates «i, • • • , ur are independently and normally distributed with 
unit variances and 

A2(W) = j^iEutf. 
8 = 1 

The Wald test allows for the significance testing of a subset of parameters within 

a given model. The application of the Wald Test on neural networks includes testing a 

collection or linear combination of connection weights within a particular neural network 

to determine if they have no affect on the network performance. Setting the connection 

weights to zero, the reduced model can be compared with the full model using Wilks 

GLRT. Wald Test applications are further discussed in Section 2.3. 

2.1.3 Efron Bootstrap Resampling Plan. The Bootstrap Resampling Plan was 

first proposed by Efron in 1979 as an approach to describe the sampling distribution for 

the estimator using the true cumulative distribution function (cdf), T. If T relates to 

the empirical cdf FN as FN relates to a secondary sample drawn from itself, then .Fjv, 

the sampling (bootstrap) distribution of the estimate under JFjv, can be used as a good 

approximation of the sampling distribution for the estimate under T (41). Efron (18) 

provides a three step Monte Carlo approximation: 



Let 

R(X,F) 

be a random variable of interest, where X = {xi, x2, • • • , XAT} indicates the entire indepen- 

dent, identically distributed (iid) sample xi,x2, • • • ,xyy from T. On the basis of having 

observed X we wish to estimate some aspect of J?'s distribution, STAT>.R. 

1. Fit the nonparametric MLE of T, 

1 
F : mass —- at XJ,     % = 1,2, • • • ,N. 

2. Draw a 'bootstrap sample' from F, 

x1;x2,--- ,xN   ~   F, 

and calculate R* = R(X*, F). 

3. Independently repeat step 2 a large number of times (B) obtaining 'bootstrap replica- 

tions' R*1, R*2, ■ ■ ■ , R*B, and calculate STAT*iT, the bootstrap estimate of STA1>#. 

The applications of the Bootstrap Resampling Plan on neural networks include ap- 

proximating the sampling distribution of the prediction, estimating parameters of that 

distribution, and any possible bias. Bootstrap applications are further discussed in Sec- 

tion 2.3. 

2.2    Salience Measures 

The definition of salience is "a pronounced trait". For neural networks a salience 

measure determines the effect a weight has on the training error (33). A review of the 

salience measures for the determination of redundancy or relevancy of weights and nodes 

of an artificial neural network includes the theory of Akaike (3) or Vapnik and Chervo- 

nenkis (58) as applied by Baum and Haussler (6), Hassibi (25), Le Cun (33), Levin (35), 

10 



Mozer (38) et al. The tools are presented in this section and applications will be discussed 

in Sections 2.4 and 2.5. 

2.2.1 Complexity Measures. Network complexity (or size) affects both the speed 

of learning and the number possible algorithms (the set of y hypotheses). Given a network 

with free weights to learn a concept or true input-output relationship z, the learning 

algorithm ends at hypothesis y G J. Reduced training error depends on a final y that 

has a large rate of success vy = ^, where n is the number of successful predictions out of 

N observations. However, generalization may be poor without uniform convergence of uy 

to the population probability of success ITy of {x G X : y(x) = z(x)}. The condition of 

uniform convergence (2, 58) and hence good generalization follows: 

For any e > 0, 

Pr SUP    \Uy   —   uy |    >    6 
yey 

< 4V>(2iV)e-e27V/8. (2) 

Inequality 2 will have a small right hand side for large N since e~e N/8 is exponentially 

decaying in N—provided the growth function i]){2N) grows slowly in comparison. The 

growth function ip measures the maximum number of different binary functions covered by 

y-, thus, ip(N) < 2N. Inasmuch as y encompasses the characteristics of the training data, 

Vapnik and Chervonenkis developed the complexity measure known as the VC dimension, 

d, as the smallest N at which y starts failing to induce all possible 2N binary functions of 

any N samples. In such a case (2, 58), ip(N) ^ 2N, but is bound by a polynomial iVd +1 > 

i>(N). The VC dimension d guarantees that the growth function will be dominated by the 

negative exponential; thus, producing a small right hand side to Inequality 2. 

The VC dimension, as a measure of the network complexity, permits inference on 

the generalization capability of the network. The VC dimension is closely related to the 

number of weights (6) with generalization expected for d < JV. The VC dimension as used 

for sizing and complexity measures is discussed in Section 2.4. 
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Another complexity measure is An Information Criterion (AIC): 

AIC(w) = 2P-2log(i(w)), 

where P is the number of independently adjustable parameters and Z-(w) is the maximum 

likelihood. Akaike (3) suggests a minimum AIC estimate for statistical model selection is 

equivalent to a hypothesis test without the significance level decision. An elementary look 

by Svarer, et al. (54) of Akaike's estimate of the generalization error or Final Prediction 

Error (FPE): 

FPE(P) =   [YTP) 
MSEtr«än 

highlights the expected rise in generalization error as the number of parameters P ap- 

proaches the number of training samples N. Svarer, et al. simplify the right-hand side 

with the training set mean square error, MSEtram, in lieu of Akaike's cost function. 

Wang, et al. (61) incorporate FPE and MSEtrain into a criterion for optimal stopping 

time and network size as discussed in Section 2.4 

2.2.2 Differential Measures. In order to perform salience investigations of the 

weights, the affect on training set error £ must be measurable. Several approaches are 

used to measure the differential affect of £. These measures become the basis of decision 

for salience strategies. 

Each network node has an associated attentional strength, a;, denoting the level 

of activity from the node. The attentional strength is equal to zero if the node has no 

influence and unity if the node is fully active. The relevance, p, of the network node as 

defined by Mozer, et al. (38): 

Pi = ^without unit i ~~ &with unit ii 

is approximated by 

. d£ 
dcti' 
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Figure 2.     Attentional Strength Coefficients of Network Units 

Although a; is not a parameter of the system, but merely notational convenience to es- 

timate relevance, Figure 2 pictorially illustrates the attentional strength as a coefficient 

controlling the emphasis of each unit. The application of relevance is further discussed in 

Section 2.5. 

Another approach considers a local model of £ as a function of a parameter vector 

W. The Hessian matrix H consists of elements h{j defined by 

d2£ 
tJ      dwidwj' 

and the gradient of £ with respect to W produces elements 

d£ 
9i = -K— ■ 

OWi 

If training has converged, then £ is at a local minimum and the gradient is negligible in a 

Taylor series expansion of the perturbation of £, shifting focus to the second partial deriva- 

tive to analytically predict the effect of perturbing the parameter vector (33). The methods 

for using differential measures are discussed in Section 2.5 and used in Chapters III and IV. 

2.2.3    Principal Component Analysis.       Given the large dimensionality of neural 

network's weight-space, a technique for reducing dimensionality and the variance of predic- 
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tion can be as effective as pruning nodes and connections. Principal component analysis 

can identify the least salient eigen-nodes and their effect on the output error. The re- 

moval of those eigen-nodes reduces dimensionality. Although there is no guarantee that 

low variance variables have little effect on the error, principal components with low vari- 

ances may only be reflecting the noise of the process and are candidates for elimination. 

By alleviating the model of these components, the response variance could decrease. The 

cost of dimensionality reduction for the benefit of generalization is an increase in model 

bias affecting the training set error. 

If principal components are used to preprocess the data, the singular value decom- 

position of the training set data matrix will produce the orthogonal matrix necessary to 

calculate the linear combinations of the data that describe the most variability. However, 

since system inputs involve various units of measure, the. principal component will depend 

heavily on the units used. For a natural problem, the first principal component may only be 

a reflection of the overall size of the system (45). Such a dimension may not be a discrim- 

inating factor. In order to transcend units, Principal Component Pruning (35) uses the 

eigendecomposition of the correlation matrix, akin to rescaling the data to unit variance 

before calculating the covariance matrix. Section 2.5 further discusses this approach. 

2.3    Statistical Network Evaluation 

From Section 2.1, the work of Wilks, Wald, and Efron provided statistical tools 

necessary to infer the appropriateness of model selection. The following sections review 

published applications of these tools. 

2.3.1 Analysis of Hidden Unit Representation. White (62) reviews statistical 

inference on network architecture with the classic irrelevant hidden unit hypothesis 

E0 : SW = 0, 

where S is the selection matrix for weights associated with the units under consideration 

for relevancy. For large N and a normal limiting distribution of weights, the x2 distributed 

test statistic in comparison to a critical value provides the decision rule for the hypothesis. 
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However, when H0 is true, the weights into the irrelevant unit(s) are not locally unique (i.e. 

have no effect on the network output), and have a limiting mixed Gaussian distribution. 

Even though the resulting test statistic is no longer x2 distributed, Wald provides statistical 

tools discussed in Section 2.1 to obtain a test statistic asymptotically distributed \\ (21). 

The Wald Test can be further expanded to examine hypotheses that a subset of 

weights of a neural network are equal to zero. Rather than test all weights to or from a 

unit, a general subset of weights amongst various units can be tested for their proximity to 

zero. Additionally, linear combinations of weights can be tested for a summary net effect. 

However, testing for zero may be misleading. Connection relevance is more a product of the 

weight and the signal rather than the weight itself. Nonetheless, the Wald Test provides 

analysis on a particular network without the need for retraining. 

2.3.2 Bootstrap Estimates of Predictive Distribution. Paas (41) demonstrates the 

bootstrap algorithm on a small neural network to obtain confidence intervals for the weight 

parameters. By resampling with replacement, numerous bootstrap data sets are used to 

train the small network and obtain a histogram of the weight estimates. Confidence inter- 

vals can be drawn from the empirical cdf of the bootstrap estimates which approximates 

the sampling distribution of the underlying cdf. Additionally, for each bootstrap weight 

vector estimate, the complete set of input vectors can be applied to the network to obtain 

a predictive distribution of the output. 

2.3.3 Bootstrap Approach for Relative Effects of Inputs. In contrast to Paas' work 

in sampling the input-output pairs of the original sample in an unconditional bootstrap 

to observe the underlying distribution, Baxt and White (7) use conditional bootstrap 

to evaluate the inputs of a neural network predicting myocardial infarction. Conditional 

bootstrap avoids making inferences on the general population by using residual sampling to 

take into account the input patterns actually observed. The input patterns are held fixed, 

while the output is perturbed in such a way that the probabilistic relation between input 

and output is upheld. For their study, they perturb the output toggle for infarction/no 

infarction by comparing the conditional probability of the target given the input vector 

with a uniform [0,1] random variable independent of the input.  The output is assigned 
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positive when the conditional probability exceeds the uniform random variable. Each 

input-perturbated output set represents a bootstrap sample. Resampling provides a means 

of making inferences on the sample population. 

Training the neural network with the original sample establishes weights for the 

network. The original sample mean deltas of are computed for each input parameter 

by varying each input vector component individually and measuring the output response. 

Using a bootstrap sample and retraining, similar network pseudosample mean deltas are 

calculated. After B resamplings, a histogram and average of the pseudosample mean deltas 

for the bootstrap mean deltas 8f of each input are obtained. If there exists a bias between 

the bootstrap and original sample mean deltas, then the same bias exists between the 

original sample mean delta and true delta 6j. The following equality expresses whether 

the original sample over/underestimates the true impact and can be used to solve for the 

expected true delta in the output function for each input parameter: 

cB *? = #-*/ 

The bias adjusted confidence histograms can be used to determine whether the input 

parameters impact on the output is significantly different than zero and thus consequential. 

2.3.4 T-test for Feature and Model Selection. Steppe and Bauer (53) combined 

much of the aforementioned statistical methods for neural network evaluation. The re- 

sulting comprehensive selection method comprises three stages for network determination. 

The stages include an initial architecture selection algorithm, a salience screening proce- 

dure, and a feature selection algorithm. Within the feature selection algorithm, addition 

architecture refinements are performed. 

• Initial Architecture Selection. The GLRT for full and reduced models determines 

the appropriate number of hidden nodes. 

• Saliency Screening. In a departure from all previous observed salience evaluations, 

Steppe uses a gradient method for saliences and the Bonferroni t-test to identify 

noise-like features as irrelevant to the network performance. 
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• Feature Selection. The GLRT for full and reduced models determines the appro- 

priateness of hidden and input nodes serially. 

This process integrates several statistical tools into a complete neural network evaluation 

procedure. Because of the serial implementation, the required training is intensive. Further 

research is being done to incorporate parallel processing. 

2.4    Optimal Network Sizing 

From Section 2.2, the work of Akaike, Vapnik and Chervonenkis provided complexity 

criteria necessary to infer the appropriate network size. The following sections review 

published positions on suitable network sizing. 

2.4.I Sample Versus Network Size for Generalization. Baum and Haussler (6) 

developed bounds for sample size as an order of network complexity and generalization 

goal. With I linear threshold nodes in the hidden layer, a generalization error rate e < I 

is obtainable for a sample size greater than an order function O 

JV>0(-log-), 
£ £ 

dependent on a training success rate 

«* = (!-!)■ 

Conversely, generalization will fail for sample size less than an order function O 

N <0(-). 
£ 

Finally, they propose that for any number of hidden layers the VC dimension is bounded 

d < 2Plog2(eZ) 

where e is the base of the natural logarithm. Baum and Haussler are joined by others 

in the continued pursuit of bounds on N and d based upon different network activation 
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functions and architecture. Bounding conclusions become stopping points for pruning and 

construction algorithms. 

24.2 Effective Machine Complexity. Wang et al. (61) considers the generalization 

performance as a function of the learning process for a given network complexity. Within 

the learning process there are phases of generalization performance with the optimum 

occurring before the training data is learned to a global minimum error. During the 

learning process, the network performs with an effective size smaller than the VC dimension 

d. Combining the two progressions, the goal is to uncover the smaller effective size at an 

iteration of training (epoch), t, that produces better generalization performance. 

Given W as the parameter vector globally minimizing the error function £(w), then 

H is nonsingular with eigenvalues Ax, • • • , A;, • • • , Ap. The effective size of the network 

at epoch t is 

d(i) = E [1 - a - ^)f • (3) 
« = 1 

Equation 3 reflects the network capacity used at t. As t grows large, Equation 3 increases 

to d monotonically. 

The asymptotically unbiased estimate of generalization error as a function of epochs 

and complexity is 

  2CT2   P 

FPE(Wi) = MSEtrain + — ]T [1 - (1 - riM)*] , 

when a2 is known.  The criterion for finding the optimal stopping time and network size 

follows 

min{FPE(wt) : P,t = 1,2, • • •}. 

Wang's approach requires the global minimization of the network and the sort of all 

interim parameter vectors. However, it does extend the AIC by incorporating a stopping 

time to the network sizing criterion. 
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2.5    Network Pruning 

From Section 2.2, the work of Akaike, Vapnik and Chervonenkis provided complex- 

ity criteria necessary to support network reduction by salience measures. The following 

sections review popular network reducing pruning algorithms. 

2.5.1 Skeletonization. Mozer et al. (38) consider the relevance of individual units 

in a network as a salience measure. The most relevant units are critical to performance and 

form the skeleton version of the network. Relevance must not be confused with magnitude 

of weights associated with a unit; but rather, relevance is the difference in training error 

with and without the unit. To determine relevance for I hidden and d input units, the 

computational cost is of order O ((I + d) ■ P). So an approximation of relevance is derived 

as 

d£ 
Pi     =      "a  > doii 

where 0 < a,- < 1 is the attentional strength of the unit ranging from zero to full influence, 

as defined by Mozer et al. (38). The derivation is based on the definition of relevance as 

the difference in error with and without the node, and the derivative of the error with 

respect to the attentional strength at unity as it holds approximately at zero. When the 

output pattern is close to the target, a better estimate of relevance is calculated based on 

an error function, £N = YJ \zk - Vk\, as opposed to the sum of square errors. 

The procedure separates training from pruning. After training the network, the 

procedure computes the relevance p for each unit and removes the unit with the smallest p. 

The procedure repeats the training, relevancy determination, and deletion until a specified 

complexity level (or VC dimension) is reached. 

2.5.2 Optimal Brain Damage. In contrast to Skeletonization, Le Cun et al. (33) 

prune the neural network by removing unimportant weights as opposed to irrelevant nodes. 

The strategy of Optimal Brain Damage (OBD) is to delete the weights with the smallest 

salience, in this case, the least effect on the training error. As discussed in Section 2.2, the 

salience measures sp are computed from the second derivative of the error function with 
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respect to the weights. Recall for the Taylor series of the error perturbation: 

p=\ P p=l P q=lp=l,p^q 
»= E£«■>+1SMfa*+ 5£ E. *Äfa'fa'+°(" «- "3)- 

the local minimum assumption deleted the first derivative terms and the quadratic assump- 

tion deleted higher order terms. A diagonal approximation without cross terms further 

simplifies the Taylor series with the assumption that the perturbation of the error from 

the deletion of several weights is the sum of the saliences caused by the deletion of each 

weight individually (Swq = 0 for all q except 6wp = —wp, see (23)). The diagonal terms of 

the Hessian matrix H of the objective error function £ are 

_ d2£ _ d2£  2 
pp~ dwj~ daf*' 

where a,j = 'S^WijXi is the weighted sum input into a node activation function. Hence, 

the remaining terms within the Taylor series approximation are the individual saliences 

_ 1,        2 
sp ~ y'lppwp- 

The second derivatives are backpropagated from layer to layer starting from the bound- 

ary condition of the output layer. An approximation corresponding to the Levenberg- 

Marquardt (33, 45) simplifies the second derivative with respect to the last layer of weighted 

sums 

d2£      _„    ,2 

94 V>kf 

and to the hidden layer(s) 

9 £        ,/ ,     x2 NT^     2  9 £ 

J J—l-K K 

Thus, the reduced Taylor series approximation of the set of saliences can be found by the 

following pair of computational equations: 
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Into the Output Layer 

el f      \2   2     2 sjk = fo(ak)  XjW jVjk, 

Into the Hidden Layer(s) 

The OBD procedure runs similar to Skeletonization. After training a reasonable net- 

work, compute the salience for each weight and zero the weights with the smallest saliences. 

Repeat the training, salience determination, and zeroing until a specified complexity level 

(or VC dimension) is reached. 

2.5.3 Optimal Brain Surgery. In an analysis of OBD, Hassibi and Stork (25) find 

the Hessian diagonalization for OBD to be inappropriate for the strongly non-diagonal 

problems they encounter. The diagonalization assumption causes the elimination of the 

wrong weights, so Hassibi and Stork consider the inverse of the full Hessian H in determin- 

ing the salience of the weights subject to pruning. If "Damage" is descriptive of the former 

approach, then Optimal Brain Surgery (OBS) suggests the corrective action necessary for 

the dominant off diagonal terms. OBS uses the same Taylor series approximation for the 

error function. If 7 is the Lagrange multiplier of the Lagrangian of the second order term 

and zeroed weight constraint 

L = -Awr • H • Aw + 7(eJ • Aw + wp), 

where ep is the unit vector in weight space corresponding to weight wp, then the optimal 

weight change is 

Aw = -wp H"1 • ep. (4) 
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The resulting OBS saliences for all the weights 

L' = IIHV*2 (5) 

are consistent with OBD for true diagonal Hessians. 

The OBS procedure runs similar to OBD. After training a reasonable network, com- 

pute H_1 and then the salience Lp for each weight. For the smallest salience of Equa- 

tion 5, use the corresponding weight into Equation 4 to calculate the optimal weight 

change for all other weights in the network, precluding the need to retrain. Recompute 

H_1, saliences, and weight updates in an iterative fashion until a stopping criterion (i.e. 

max AE,mind,minr) is reached. 

In contrast to OBD, OBS considers the calculation of P2 elements of the H and 

its inverse, H_1. Fortunately, the Hessian can be reduced to a covariance matrix form, 

simplifying the computational cost and allowing a recursive formula for computing the 

inverse. Thus, OBD's assumption of a diagonal Hessian can be avoided with OBS, without 

great expense, especially since network retraining is not necessary for OBS. 

Hassibi et al. (26) attempt to solve the computational burden for larger networks 

with a dominant eigenspace decomposition of the inverse Hessian from the signal process- 

ing experience. As with any other approximation of the Hessian, the pruning technique will 

perform below the capability using the true Hessian. Unfortunately, their study reported 

excessively poor performance for eigenspace decomposition leaving the computational bur- 

den unresolved. 

2.5.4    Pruning by Principal Component Analysis (PCA). In contrast to the 

previous pruning algorithms, Principal Component Pruning (PCP) by Levin et al. (35) does 

not require the calculation of the full Hessian matrix nor the retraining of the network. 

Instead, the weight and node activity correlation matrices of each layer are calculated. 

Through eigenspace decomposition, the principal components of the layer activity can 

be ranked.   The deletion of eigennodes least affecting the validation error reduces the 
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dimensionality of the network, or effective number of parameters. The weights of the layer 

are projected onto a subspace of fewer eigenvectors until a stopping criterion is reached. 

PCP does not eliminate actual weights like OBD and OBS. The computational as- 

pects of the network for generalization remain intact. However, PCP reduces the effective 

level of complexity to improve generalization and the technique does not require the com- 

putational burden of retraining and full Hessian analysis. Comparing the PCP approach 

to methods developed in this dissertation may be the basis of future work. 

2.6    Chapter Summary 

In review, the tools for statistical inference can be used to evaluate the neural net- 

works in search of simpler models. Complexity measures help define the optimal sizing and 

training for networks. The complexity measures provide support for network reduction. 

Within network reduction approaches, salience measures simplify networks by eliminating 

weights or nodes that are inconsequential with respect to the error function. In Chap- 

ter III, the research joins the statistical rigor of multiple comparison procedures with the 

computational pruning algorithms in an attempt to intelligently remove inconsequential 

weights in a more efficient manner. 
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Z/7.   Multiple Comparison Pruning 

This chapter develops a new method of implementing simultaneous inference procedures 

to accelerate the elimination of network connections (pruning) with statistical discipline. 

3.1    Simultaneous Inference Procedures 

A common theme amongst pruning algorithms is the role of salience measures in 

determining which weights are important. Weight salience is a measure of the effect each 

weight has on the training error. These saliences may be derived from a Taylor series 

approximation of the perturbation of the objective error function £(w). Weights with 

small saliences have little affect on error and are subject to pruning. However, obtaining 

saliences sometimes may be computationally burdensome; for instance, when inverting the 

Hessian matrix as seen in Equation 5. The efficiency of parameter elimination becomes an 

issue for large networks posing a formidable task. 

Parameter elimination can be based upon minimal, significantly less, or neighboring 

salience. Shortsighted algorithms may consider prescribed decision rules that ignore the 

significance between saliences. Given multiple saliences for the parameters in question, 

multiple comparisons may improve the decision making steps within the pruning algorithm. 

Rather than eliminate parameters one at a time, comparatively small saliences can be 

grouped and eliminated in batch. Batch elimination can reduce the number of loops, 

retraining, or Hessian matrix inversions in a pruning algorithm. 

If multiple comparisons are of interest, conservative approaches include methods by 

Bonferroni, Scheffe, Holm, and Tukey. The more prominent Bonferrqni multiple compari- 

son procedure is appropriate when a particular set of pairwise comparisons, contrasts, or 

linear combinations of saliences are specified in advance. However when increasing the 

number of comparisons of interest, the confidence intervals are narrowed with the Tukey 

procedure. The Tukey multiple comparison procedure is sometimes referred to as honestly 

significant difference tests (40). That bold assertion reflects the envelopment of all pair- 

wise comparison tests and thus the ability to data snoop naturally without affecting the 

confidence coefficient or significance level. The Scheffe procedure also permits data snoop- 
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ing in that it accounts for all possible contrasts as opposed to pairwise comparisons. The 

Holm procedure is a computationally complex refinement of the Bonferroni procedure that 

updates the significance level as the number of comparisons are accepted as significantly 

different. 

3.2    Tukey Multiple Comparison Procedure 

The Tukey Multiple Comparison Procedure (MCP) considers the set of all pairwise 

comparisons: 

H0:   ßi= fij (6) 

Ha ■     ßi  7^ ßj 

where i,j = l,2,---,P with i ^ j. The family significance level is exactly a when all the 

sample sizes n,- are equal. When the sample sizes are not equal, the procedure is sometimes 

called the Tukey-Kramer procedure (40) and the family significance level is less than a. 

Thus, the procedure is conservative for nonequal sample sizes. 

The Tukey procedure uses the studentized range distribution. For P observations 

Li, • • • ,Lp independently distributed N(fi, a2), suppose the variance estimate s2 is based 

on v degrees of freedom independent of L;, then the resulting studentized range, q, for 

salience is: 

max Li — min L; 

For each pairwise comparison, the test statistic used for Hypothesis 6 is: 

s(U - Lj) 
V/MSE.(i + ^) 

(7) 

and H0 is rejected when |g*| > q(l - a;P;v), thereby concluding a significant difference 

between the pair. With equal sample size n for all L,-, then v = nP - P. Otherwise, if L; 

have nonequal sample sizes, then v = J2i=i ni  ~ ?• 
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3.3    Bootstrap Training 

As discussed in Chapter II, Efron (18) has shown that the Bootstrap Algorithm 

finds a distribution that can be used as a good approximation of the sampling distribution 

for the estimate under the true cdf. However, the notion of retraining with B samples 

is as tedious as the numerous cycles through a pruning algorithm. With the resampling 

incorporated into the network training algorithm, the weight estimates bootstrap about a 

minimum to approximate the sampling distribution. The weight estimates are obtained 

by retraining from a constant set of intermediate weights determined by an initial training 

session of the complete training data set. Only one cycle produces the multiple estimates 

needed to proceed with the simultaneous inference procedure. 

With 128 bootstrap replications of training data sets, the histograms in Figures 3 and 4 

illustrate a resulting weight and salience estimate distribution.   The Anderson-Darling 

goodness-of-fit test fails to reject normality at level 0.1.   Thus, resampling the available 

data set produces the necessary samples for inference of the means. 

Figure 3.      Bootstrap Distribution of Weight:   Large Sampling, Weights of 1st Result 
Becomes Constant Initial Weights 

With the Bootstrap Algorithm (Section 2.1.3) nested within the network training 

algorithm, an appropriate number of estimates can be collected to produce the mean 

weights 

y-B       *{b) 

B 
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and mean saliences 

Vs    T*(6) 
Lp ~        B 

where Wp  * and Lp  ' are the pth weight and salience from the bth bootstrap. 

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 
Output LayQr Bias Salience „ ^Q-3 

Figure 4.      Bootstrap Distribution of Salience:   Large Sampling, Weights of 1st Result 
Becomes Constant Initial Weights 

For a pruning algorithm's parameter set under review, a comparative approach on 

the means of the parameter set can be performed using Tukey MCP. The ability to 

make simultaneous inferences is a worthy modification to acceptable pruning algorithms. 

The performance of the modified pruning algorithm can be compared with its root form for 

computational speed, training error, and generalization. Section 3.4 presents an application 

of multiple comparison pruning using the benchmark Monk's Problems. 

3.4    Example: Monk's Problems 

The Monk's Problems (55) are excellent benchmark Boolean tests for pruning al- 

gorithms. Monk's problems concern the classification of robots exhibiting six different 

features. Each feature has either two, three, or four possibilities as follows: 

1. head shape £ round, square, octagon 

2. body shape £ round, square, octagon 
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3. is smiling G yes, no 

4. is holding G sword, balloon, flag 

5. coat color G red, yellow, green, blue 

6. w/ necktie G yes, no. 

These features can describe 432 different robots. The three problems proposed by 

Thrun (55) involve the training of a neural network to discern certain distinctions of the 

robots to include: 

1. head shape and body shape are the same, or coat color is red 

2. two of the six features have the first value: round, yes, sword, red 

3. holding a sword and coat color is red, or coat color isn't blue and body shape isn't 

octagon. 

The Monk's Problems randomly draw from the 432 legal examples. The training set 

sizes of the three problems are set at 124, 169, and 122 respectively. The third problem 

is corrupted with a 5% error in the training set. For the purposes of illustration the first 

Monk's problem is used to demonstrate Tukey MCP. 

For the first Monk's Problem, the neural network has 17 on/off inputs, one for each 

of the features' various possibilities as illustrated in Figure 5.  The network begins with 

Output layer 

Hidden 
layer 

head | torso | ^ | hold |    color    | tie      P 
Figure 5.      Neural Network for Monk's Problems 
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58 connections between the input layer, the three hidden nodes, and the one output node. 

Minimally, the pruning algorithm is expected to detect which inputs are important to 

discern the desirable characteristics. The pruning algorithm may test the reduced network 

with the entire 432 legal examples. 

3.4.I Multiple Weight Comparison Pruning. For multiple comparison pruning, 

a random sample of 124 robots is drawn from the 432 legal examples. Following Efron's 

approach (18), a bootstrap sample of 124 examples is drawn with replacement from the 

random sample of 124 robots. Certain elements of the random sample may appear more 

than once or not at all in the bootstrap sample. The network is trained with the boot- 

strap sample, and weights and saliences are recorded upon completion. Another bootstrap 

sample of 124 examples is drawn from the random sample, and the training is continued 

from the location of the final weights of the previous bootstrap sample. Again, weights and 

saliences are recorded at the completion of training for each repetitive bootstrap sampling. 

Upon the completion of B samples, the mean weights and saliences are calculated. Pruning 

decisions are determined from the analysis of these mean estimates. 

25 
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Figure 6.      Bootstrap Distribution: 
Weight Initialized to Previous Result 

Figure 7.      Bootstrap Distribution: 
Weight Initialized to 1st Result 

Unfortunately, when subsequent bootstrap iterations are started from the previous 

bootstrap's final location to accelerate training, training continues in an improving location 

(near optimal state) such that successive iterations may require no training at all to achieve 

the error goal. The resulting parameter estimates remain unchanged, providing a biased 

result.  Randomly selecting the initial weight set from previous bootstrap iterations also 
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finds the most optimal weight set reappearing more frequently as the weights are recorded 

unchanged in the sample set. Both approaches remain practical with the aid of additional 

programming to force training via a flexible error goal. However, for purposes of this 

example, the algorithm is modified to always initialize subsequent bootstrap iterations 

with the weights recorded from the training of the first bootstrap sample. Successive 

iterations are less likely to succeed without training, thereby providing additional weight 

estimates. Figures 6 and 7 illustrate contrasting distributions of weight estimates from 

the bootstrap method using initial weights that hinder and foster retraining. Figure 3 

illustrates a large sampling using the same process as that for Figure 7. 

For naive simplicity, this pruning algorithm considers the magnitude of the mean 

weights for elimination with caution: weight magnitude pruning (27) in which the weights 

are ranked according to magnitude with the smallest deleted, can lead to improper prun- 

ing (23, 25). A small weight value may not be indicative of unimportance depending on the 

strength of the coupled output. According to Gorodkin (23), weight magnitude pruning 

is equivalent to the second derivative within the Taylor series expansion of the perturba- 

tion of error to be assumed a constant for all weights, when in fact, for the hidden to 

output weights, the second derivative is determined by the activation level of the hidden 

unit not necessarily the same as the rest. Likewise, for the input to hidden weights, the 

corresponding output weight figures in the derivative and they are typically not equal. 

Although weight magnitude pruning is not the end goal of this dissertation, in this 

example, the weight magnitude method merely illustrates the iterative process and em- 

ployment of the Tukey MCP. In the pruning analysis, the Tukey MCP uses the test 

statistic of Equation 7 to determine which weights are not significantly different from the 

smallest weight considered for network reduction. By zeroing these additional weights of 

no significant difference, pruning is accelerated. 

The bootstrap technique recycles for additional pruning. By allowing the zeroed 

weights to retrain, training is accelerated (recall the advantage of larger networks). Also, 

the possibility exists that a once zeroed weight may gain significance as a result of a new 

found weight subject to elimination. An ever increasing number of weights are zeroed as 

30 



Table 1.      Order of Weight Elimination 

Cycle(s) 
1 

2-5 
6-11 
12-16 
17-21 
22-28 
29-31 

Weights Eliminated 
bluel smilel tiel 
flag3 octheadl smile2 
balloon2 flag2 tielessl 
sqrtorso2 balloonl greenl 
green2 tie3 sword2 
rndhead3 tieless3 sad3 
redl green3 octtorso2 

sqrhead2 tieless2 balloon3 hidbiasl 
sqrhead2a sword3 rndtorsol sword2 
rndtorso2 rndhead2 yellowl sadl 
sad2 tie2 hidbias3 sqrtorso 2 
yellow2 blue2 smile3 flagl 
hidbias2 octhead3 yellow3 blue3 

"Eliminated again in third cycle after regaining significance in second cycle 

the pruning cycles to a stopping point. In this example, the neural network is reduced to 

a quarter its original number of connections. 

3.4.2 Analysis of the Results. After 31 pruning cycles, the neural network con- 

nections reduces 75% from 58 to 14 weights. In seven of the cycles, the Tukey MCP finds 

an insignificant difference between the least weight (subject to pruning) and up to six 

other weights in the cycle. By zeroing those weights of no significant difference, thirteen 

cycles are avoided. In one instance, a once eliminated weight regarding head shape gains 

significance, only to be insignificant again in a subsequent pruning cycle. Table 1 shows 

the order in which weights are deleted. 

In looking at Figure 8, note that the inputs of consequence relate directly to the 

Monks Problem 1 definition. Head and torso shape and the color red are the only inputs 

left to distinguish as to whether the robot answers the description of a robot with the 

same head as torso or wearing the color red. The results nearly mirror the network pruned 

by Hassibi's OBS (25), so the use of weights instead of saliences were not detrimental to 

the demonstration. Prior to zeroing the 44 weights to be pruned, the last training cycle 

produced zero error. Performed early in the computer code development, the algorithm 

had not retrained with the 44 weights eliminated which would be necessary to avoid large 

error (33%) by the remaining 14 weight estimates. Further work incorporates the retraining 

necessity. Also, additional pruning may produce a non-redundant input to hidden layer 

relationship, and possibly eliminate the second hidden node. This may occur if the network 

comprehends octagon as the absence of round and square. If the network starts with one 

31 



hidden node, Setiono (51) shows that the Monks Problem 3 network could be pruned to 

six connections to describe the four distinguishing characteristics of the problem, allowing 

for one connection each from the bias and the hidden node. 

Output layer 

Hidden 
layer 

Figure 8. 
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Monk's Problem 1 Neural Network Reduction by Weight Magnitudes using 
Tukey MCP 

3.4.3 Critique of the Approach. In critique of this analysis, the Tukey MCP 

requires common variance and uncorrelated mean estimates of the parameters. In the 

case of the neural network machine, the mean weight estimates meet neither requirement. 

The heteroscedasticity and correlation within the estimates lead to a larger MSE in Equa- 

tion 7. This produces a more conservative test that promotes a greater likelihood of no 

significant difference between the weight subject to pruning and weights near valued. The 

test eliminates near valued weights more readily. In the first cycle when seven weights 

are pruned, if the means are ordered and the subsequent six are compared with the least 

weight, a 2-test finds only three of the six not significantly different from the least weight. 

The Newman-Keuls test produces a result similar to the Tukey MCP and Duncan's new 

multiple range test comes in between the f-test and the others (24). 

Gibbons et al. (20) and Hsu (29) consider subset selection procedures for homoscedas- 

tic, uncorrelated sample means as a conservative analogue to the ordered i-test approach. 

Subset selection considers a nonempty set of populations with a probability of a correct 

selection of the subset containing the best population. Given the maximum (or minimum) 
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sample mean, a one-sided confidence interval is drawn to exclude other sample means as 

the true extremum. Those samples within the interval may be considered of no significant 

difference. This approach supports multiple comparison pruning in that the sample means 

can be ordered and the smallest salience compared to others within a confidence interval. 

However, neither homoscedasticity nor independence may be assumed. 

Regarding nonequal variances, the Behrens-Fisher problem addresses heteroscedas- 

ticity for independent samples. Sachs (47) describes the approximating routine for Behrens- 

Fisher difference of two means of possible unequal variance as a modified i-test. Stein (52) 

looks to a two-stage procedure devoid of variance in the power function. Acknowledging the 

nonexistence of single-sample selection procedure independent of variance, Dudewicz et al. (14, 

15, 16) furthers the selection process with the Heteroscedastic Method for ranking and se- 

lection with unknown and unequal variances. 

In order to account for the correlation between sample means, procedures of multi- 

ple range tests, confidence intervals, and pairwise comparisons for dependent means are 

developed by Kramer (31), Dunn (17), and Brown (11). Covariates join the studentized 

range distribution as an integral part of the decision rule. Thus, selecting the subset with 

the best population, that is the least weight or salience, is possible for heteroscedastic, 

correlated components. The resulting subset is that to be pruned in the algorithm. 

Correlated means can also be compared using nonparametric techniques. The rank 

sum statistic of each parameter can be used for pairwise comparisons in a single-step 

test procedure (28). From the Friedman Test (19), Sachs (52) considers approximate 

multiple comparisons along the approach of Student, Newman and Keuls, and Wilcoxon 

and Wilcox. The distribution-free comparison of correlated samples bypasses the need for 

covariates and becomes an alternate approach for the pruning decision rule. Needless to say, 

the introductory example of this section illustrated some simple algorithmic applications. 

However, in accounting for the correlated means and departing from the weight magnitude 

method, Section 3.5 details the Kramer extension of the Tukey MCP, the performance on 

salience measures, and the appropriateness of this method. 
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3.5    Tukey-Kramer Multiple Comparison Pruning 

In the previous section, the Tukey MCP demonstrated the ability to prune subsets 

of weights within a single decision while clarifying the need to account for the correlation 

between sample means. The procedures of multiple range tests, confidence intervals, and 

pairwise comparisons for dependent means as developed by Kramer (31), Dunn (17), and 

Brown (11), involve the covariates as an integral part of the studentized range decision 

rule. The estimated variances, cus2, and covariances, CijS2, establish a standard error 

term for the difference of two means by Zf- = (cus2 - 2cijS2 + CjjS2) /2. The simultaneous 

confidence intervals, 

Mi -tije[li-lj±q{l-a;P;v)Zij]     (1 < i < j < P), (8) 

have confidence level at least 1 - a. Selecting the subset with the least salience is possible 

for heteroscedastic, correlated components. The resulting subset of saliences identify the 

weights to be eliminated. This approach is called the Tukey-Kramer MCP. Using the same 

Monks Problem as in Section 3.4.1, the Tukey-Kramer MCP performance is demonstrated 

on the saliences of the weights. 

OBS is again used as the comparative pruning method. In the pruning analysis, 

the Tukey-Kramer MCP determines which mean saliences are not significantly different 

from the smallest mean salience considered for network reduction. By zeroing additional 

weights of no significant difference in salience, pruning is accelerated. If more than one 

weight is removed, the reduced network is retrained, otherwise the weight update procedure 

of OBS is employed for additional analysis of the mean saliences until a stopping criterion 

is reached. 

3.5.1 Multiple Salience Comparison Results. After 18 pruning cycles of MCP, 

the number of neural network connections reduced to a fourth, from 58 to 15 weights. 

In six of the cycles, the Tukey-Kramer MCP found an insignificant difference between the 

least mean salience (weight subject to pruning) and up to seven other saliences in the cycle 

at a — 0.05. By zeroing the associated weights with saliences of no significant difference, 

twenty-five cycles were avoided. 
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In looking at Figure 9, note that the remaining inputs of consequence relate directly 

to the Monks Problem 1 definition. Head and torso shape and the color red are the only 

inputs left to distinguish as to whether the robot answers the description of a robot with 

the same head as torso or wearing the color red. The results nearly mirror the network 

pruned by Hassibi's OBS (25). Final network retraining has been added to the algorithms 

for the rest of the dissertation. Retraining the algorithm with the 43 weights eliminated 

produces an error of 8.33%, similar to OBS. 

Output layer 

Hidden 
layer 

Figure 9. 
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Monk's Problem 1 Neural Network Reduction by Salience Magnitudes Using 
Tukey-Kramer MCP 

While the Tukey-Kramer MCP was as successful as OBS in trimming the network, 

the computational time required to collect enough bootstrap resamples for mean weight 

estimation was much larger for MCP than for OBS. The floating point operations (flops) 

for MCP were 40.1 giga-flops compared to 2.75 giga-flops for OBS. This order of magnitude 

difference in part may be attributed to the relatively small size of the initial network. In 

that only 43 weights were ultimately eliminated, the MCP was hard pressed to repeatedly 

eliminate large numbers of weights to justify the resampling. 

To demonstrate the capability of MCP in a favorable arrangement, consider an initial 

network of ten hidden nodes. With 191 weights in the network, the training set must 

be expanded from 124 exemplars to something greater than the number of weights. In 

this case 248 exemplars were drawn for the training set.   After resampled training, the 
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Table 2.     Initial MCP Weight Elimination 

Inputs Hidden Weights Ave Pruned 
17 
17 
17 

3 
5 
10 

58 
96 
191 

5.45 
7.79 
60.74 

MCP performed a single subset elimination on those weights whose saliences were not 

significantly different from the least salience at a = .05. In 119 trials, MCP eliminated 30 

to 90 weights, or approximately 61 weights on average. In competition, OBS was permitted 

to eliminate the same number of weights for each of the 119 trials. In this situation, MCP 

equaled OBS accuracy in all but two of the trials. Meanwhile, MCP required 13% less 

flops than OBS. MCP averaged 113 giga-fiops compared to 131 giga-flops for OBS. The 

paired f-test found the reduction in computational burden significant with p < 0.0001. 

So, with larger networks, the size of the subset eliminated by MCP grows as evident 

by the trend in Table 2. Since OBS requires an additional iteration for each weight MCP 

subset eliminates, the difference in floating point operations favors MCP to surpass OBS 

in efficiency. 

The Tukey-Kramer MCP limitation is its need for mean estimates to satisfy the hy- 

pothesis test. The computational burden of bootstrap iterations ceases by developing a 

single sample test. The work of Pareto (42), though focused on income distributions, is 

often cited for the applicability of his distribution to logarithmic models. By applying 

the notion of trivial many and vital few to the saliences of the network weights, Pareto 

distribution theory replaces bootstrap resampling with single sample analysis. Section 3.6 

develops the single sample multiple comparison approach to compete with single elimina- 

tion methods of pruning algorithms. 

S.6    Pareto Pruning 

In contrast to Tukey-Kramer MCP's computational burden of mean estimation and 

comparison, Pareto pruning considers the distribution of a single sample of saliences. The 
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classical Pareto (42) distribution is modeled by 

F(x) = Cx- x>0, 

determining the proportion of individuals in a population with income exceeding x. Pareto 

used the distribution to assert an underlying law for the distribution of income: that the 

Pareto parameter, a, was invariant about the value 1.5 under changes in population. The 

development of similar income models continued in the early 1900's, but the distribution 

took on new significance in the 1950's when J.M. Juran popularized the Pareto diagram 

as means of quality control. Rather than model the wealthy few in a population, Juran 

focused the use of the distribution on the vital few processes that hindered quality. In a 

similar fashion for neural networks, the Pareto diagram in Figure 10 illustrates the vital 

few saliences that determine the necessary weights and the trivial many saliences in the 

tail of the distribution. 

0 10 
Vita! Few 

20 30 40 
Trivial Many 

Figure 10.      Pareto Diagram of Network Saliences 

From a single sample of saliences, estimates of the distribution parameters can be used to 

make comparisons and subset elimination similar to the Tukey-Kramer MCP without the 

computational burden of bootstrapping. 

Arnold (5) provides a substantial review of the Pareto distribution. The two-parameter 

form of the Pareto distribution employs the Pareto or shape parameter, a, and the location 
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or cut-off value, k, in the probability density function 

.0 x < k 
i(x) = (9) 

aka/.Ta+1   x > k 

and from Equation 9, the resulting cumulative distribution function 

V(x) = 1 - ( - J   ,     0 < k < x,    a > 0. (10) 

The x in the Pareto distribution is the salience measure of each weight for this dissertation. 

Quandt's (43) maximum likelihood estimators (MLE) of a and k, comparable to 

Muniruzzaman's (39), are 

k =   min x;, (11) 
Ki<P 

and 

P 
a = 

P 

Y^log(xi/k) 
8 = 1 

(12) 

The unbiased estimators are given by 

ä=(^—-)ä,     P>2, (13) 

and 

\ (14) 1- (P-l)äJ 

as derived by Saksena (48, 49) using Malik's (36) results on the distributions and in- 

dependence of k and ä. Arnold (5) summarizes that the unbiased estimates of Equa- 

tions 13 and 14 improvement in behavior for fixed finite value P also benefit from a 

generalized MSE uniformly smaller than the MLE of Equations 11 and 12. Baxter (8) and 

Saksena et al. (49) independently show that the minimum variance unbiased estimates 
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(MVUE) k and ä are asymptotically efficient and the relation of variances for MVUE 

versus MLE are as follows: 

a 2 P2a2 

and 

Var® = ~ < Var(ä) = (p _ 2)2(p _ 3)   if    P > 3, 

k2 - Pak2 

yar(£) = a(P-l)(Pa-2) < ^r(k) = (Pa-l)2(Pa-2) 

if a < 2 and P > a(2-a) * 

Kang and Cho (30) find that if one of the parameters, a or k, is known, the biased 

jackknife estimate of the other parameter compares with the MLE. They further derive a 

biased minimum risk estimator (MRE) that has a smaller MSE than both the MLE and 

the MVUE. They then propose a MRE for the case of both parameters unknown; however, 

the MRE still retains a bias for a minimal improvement of MSE. The use of other estimates 

of a and k may be worthy of future work. 

The implementation of Pareto Pruning is a modification of existing pruning algo- 

rithms, where the Pareto distribution supports the decision to remove multiple connec- 

tions from the network. For algorithmic simplicity, the unbiased estimate of the cut-off 

value k is used in a confidence interval similar to the Tukey-Kramer Confidence Interval 

of Equation 8. The confidence intervals are constructed for 

Hi - pj e U - lj ± (1 - CDF)-* • k      (1 < i < j < P) 

where CDF is the desired level of pruning based on the cumulative distribution function 

of Equation 10. Based on the comparable level of pruning by Tukey-Kramer MCP, 20% 

elimination is a desirable level for the CDF term. As the distribution function rises to the 

20% level, the steep decline on the left side of the Pareto density function encompasses 

only the trivial saliences. Essentially, saliences less than (1 - CDF)~ä . k are grouped in 

the trivial many subset for elimination. Weight updates are based on the optimal weight 

change prescribed by the largest salience within the subset eliminated. 
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3.6.1 Pareto Pruning versus Tukey-Kramer MCP. To compare the performance 

of the Tukey-Kramer MCP with Pareto Pruning, consider Monk's Problem 1 for a network 

beginning with 58 connections between the input layer, three hidden nodes, and one output 

node. Minimally, the pruning algorithm is expected to detect which inputs are important to 

discern the desirable characteristics. The pruning algorithm may test the reduced network 

with the entire 432 legal examples. 

For both methods, a random sample of 124 robots is drawn from the 432 legal 

examples. The network is trained with the sample, and weights and saliences are recorded 

upon completion. Pruning decisions are determined from the analysis of these estimates. 

In the pruning analysis, Pareto pruning determines which saliences are near the least 

salience considered for network reduction. The histogram of Figure 11 illustrates the 

dense collection of trivial weights in a Pareto-like distribution. 

Saliences lor First Cycle of Monks Problem 1 

Figure 11.      Network Salience Distribution 

By zeroing additional weights with trivial salience within a CDF level, pruning is 

accelerated. The weight update procedure of OBS is employed based on the largest salience 

eliminated in that iteration, propagating an updated Hessian and analysis of the remaining 

saliences until a stopping criterion is reached. If the stopping criterion is exceeded, the last 

iteration is undone and OBS is employed to remove additional weights individually until 

the stopping criterion is again exceeded. Then the last iteration is undone and pruning is 

complete. 
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The Tukey-Kramer MCP bootstrap resamples as before to accomplish the multiple 

comparisons of saliences and subset elimination of weights whose saliences are not signif- 

icantly different. Retraining occurs when more than one weight is eliminated; otherwise, 

the same weight update procedure is applied to the bootstrap estimates for another itera- 

tion of MCP. If the stopping criterion is exceeded, the last iteration is undone and pruning 

is complete. 

-30 -20 
In Percentage Test Errors: TK - Pareto 

Figure 12.      Difference in Percentage 
Test Error for Tukey-Kramer vs 
Pareto Pruning 

-20 -15 -10 
Drllarence in Prune Count: TK-Pareto 

10 15 

Figure 13.      Difference in Prune 
Count for Tukey-Kramer vs Pareto 
Pruning 

One hundred runs of network reduction of Monk's Problem 1 compare the perfor- 

mance, degree of pruning, and computational burden of Tukey-Kramer MCP and Pareto 

Pruning. In Figures 12 and 13, the difference in performance and degree of pruning is 

found to be not significantly different from zero using the Bonferroni i-test with a = 0.05 

and 5 = 3 combinations. However, the paired i-test finds the floating point operations of 

Tukey-Kramer MCP to be significantly greater (p < 0.0001) than those for Pareto Pruning 

as seen in Figure 14, similar to the comparison between Tukey-Kramer MCP and OBS. 

Whereas Tukey-Kramer MCP is too computationally intensive to compete with Pareto 

Pruning and OBS in efficiency, Pareto Pruning operates on the same order of magnitude 

of floating point operations as OBS and thus warrants further comparison. 

3.6.2 Pareto versus OBS Pruning. The implementation of Pareto pruning is a 

modification of existing pruning algorithms, where Pareto analysis supports the decision 

to remove multiple connections from the network. Monk's Problems are used to demon- 
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Difference in Floating Point Operations: TK - Pareto 

Figure 14.      Difference in Floating Point Operations for Tukey-Kramer vs Pareto Pruning 

strate the performance of pruning algorithms like OBS or its competitors.  Likewise, the 

performance with and without Pareto analysis can be demonstrated by example. 

In this section, OBS is used as the comparative pruning method. The network of 

Figure 5 is trained for Monk's Problem 1 to discern if the robot's head shape and body 

shape are the same, or if the coat color is red. The training and test errors are zero or 

minimal for the complete network structure. As before, the errors increase as the network 

is pruned to sparse structure of relevant inputs and necessary hidden units. However, as 

Figure 15 indicates, the Bonferroni t-test (a = 0.05 and g = 3 combinations) finds no 

significant difference in error when comparing OBS with Pareto pruning. The numbers of 

connections pruned are also not significantly different at a = 0.05 as shown in Figure 16. 

In contrast, from the paired t-test, the amount of floating point operations required to 

reach the final reduced network favors Pareto pruning significantly (p < 0.0001) as shown 

in Figure 17. The decision to remove more than one trivial connection at a time as a 

function of the estimates of the Pareto CDF reduces the number of iterations and Hessian 

inversions to reach the stopping criterion. 

The example can be broadened as in Monk's Problem 2 by training the neural network 

to discern if two of the six features of the robots have the first value. All features play a 

role in the network training. Nonetheless, as Figures 18 and 19 indicate, the Bonferroni 

t-test (a = 0.05 and g = 3 combinations) finds no significant difference in performance nor 
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Figure 15.      Monk's 1, Difference in 
Percentage Test Error for OBS vs 
Pareto Pruning 

Figure 16.      Monk's 1, Difference in 
Prune Count for OBS vs Pareto 
Pruning 
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Difference in Floating Point Operations: OBS - Pareto 

Figure 17.      Monk's 1, Difference in Floating Point Operations for OBS vs Pareto Pruning 

level of pruning for OBS as compared with Pareto pruning. Figure 20 and the paired t- 

test indicate that Pareto pruning has significantly reduced (p < 0.0001) the computational 

burden with fewer iterations to reach the stopping criterion. 

Monk's Problem 3 dictates training the neural network to discern if the robot's 

holding ä sword and its coat color is red, or if the coat color isn't blue and body shape 

isn't octagon, with a corrupted training set. The 5% corruption of training set actually 

improves the network's ability to generalize with lower test errors, but the error difference 

between using Pareto or not in Figure 21 is not significant at a = 0.05 with g = 3 

combinations. Nor is the final complexity, with or without Pareto, significantly different 
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Figure 18.      Monk's 2, Difference in 
Percentage Test Error for OBS vs 
Pareto Pruning 

Figure 19.     Monk's 2, Difference in 
Prune Count for OBS vs Pareto 
Pruning 

Difference In Floating Point Operations: OBS - Pareto 

Figure 20.      Monk's 2, Difference in Floating Point Operations for OBS vs Pareto Pruning 

at a = 0.05 when the stopping criterion is reached, as shown in Figure 22. For Monk's 

Problem 3, the paired i-test finds Pareto pruning significantly less computationally costly 

(p < 0.0001) than OBS, as evident in Figure 23. 

Even though Pareto pruning proves to be an effective and efficient pruning approach 

for all three of the Monk's Problems involving the 17 input binary system, the Pareto-like 

distribution of Figure 11 is rejected by a liberal Chi-Square goodness-of-fit test (40) with 

a p-value < 0.005. While Pareto Pruning demonstrates the ability to subset eliminate 

weights just like Tukey-Kramer MCP (but with one sample), the use of the Pareto pa- 

rameters' estimator is not justifiable.  Although the distribution of the saliences suggest 
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Figure 21.      Monk's 3, Difference in 
Percentage Test Error for OBS vs 
Pareto Pruning 

Figure 22.     Monk's 3, Difference in 
Prune Count for OBS vs Pareto 
Pruning 

Difference in Floating Point Operations: OBS - Pareto 

Figure 23.      Monk's 3, Difference in Floating Point Operations for OBS vs Pareto Pruning 

a disbursement of a trivial many against a vital few, the underlying distribution is found 

to behave more like a Weibull distribution. Section 3.7 considers the characteristics of the 

Weibull distribution and its fit to the distribution of saliences. 

3.7    Weibull Pruning 

Although the neural network saliences appear to have a Pareto distribution with 

the precipitous decline from the left, the goodness-of-fit tests suggest that the drop is 

better described by a Weibull distribution. Developed in 1937, W. Weibull's distribution 

is primarily considered for life data and failure forecasting.   Abernethy (1) provides a 
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substantial review of the Weibull distribution. The two-parameter form of the Weibull 

distribution employs the slope or shape parameter, ß, and the scale or characteristic life 

parameter, (, in the probability density function 

fW=f(^fe-<*«>' 

and the resulting cumulative distribution function 

x > 0 (15) 

T{x) = 1 - e~(x/Vß      x > 0. (16) 

The x in the Weibull distribution is the salience measure of each weight for this dissertation. 

The MLE of ß, denoted ß, satisfies 

Jjcfloga:,- p 

p- 
i'=l ß 

(17) 

and dependent on ß, the MLE of ( is 

/ p    -\ 

p 

v     / 

(18) 

The Weibull distribution uses the data to select the distribution and fit the parame- 

ters (1). Figure 24 illustrates the flexibility of Equation 15 to encompass a variety of data 

representations. For ß less than one, f has a precipitous decline on the left like a Pareto 

distribution. When ß = 1, the Weibull is the Exponential distribution. For ß greater than 

one, the Weibull distribution appears more like a lognormal distribution with a starting 

point at the origin. 
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Figure 24.      Weibull Probability Density Function for Various Slope Parameter 

The implementation of Weibull Pruning, like Pareto Pruning, is a modification of ex- 

isting pruning algorithms, where the Weibull distribution supports the decision to remove 

multiple connections from the network. A goodness-of-fit test is part of the algorithm 

decision prior to pruning a subset of weights. If the Weibull distribution is rejected, the al- 

gorithm performs a single weight elimination. Likewise, the notion of trivial many saliences 

dictates subset pruning only when ß is less than one, see Figure 24. For algorithmic sim- 

plicity, the MLEs of Equations 17 and 18 are used in a confidence interval similar to the 

Tukey-Kramer Confidence Interval of Equation 8. The confidence intervals are constructed 

for 

fii ~ Pj € Li -Lj ±( ■ (log- 
CDF (1 < i < j < P) (19) 

where CDF is the desired level of pruning based on the cumulative distribution function 

of Equation 16.   Based on the comparable level of pruning by Tukey-Kramer MCP and 
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the results of Pareto Pruning, 20% elimination is a desirable level for the CDF term. As 

the distribution function rises to the 20% level, the steep decline on the left side of the 

Weibull density function encompasses only the trivial saliences. A less aggressive 10% 

elimination, although not as efficient, may be appropriate if the ß is closer to unity, when 

the Weibull distribution becomes the Exponential distribution. In either case, saliences 

less than ( ■ (log JZ^VF ) " are gr0UPed in the trivial many subset for elimination. Weight 

updates are based on the optimal weight change prescribed by the largest salience within 

the subset eliminated. 
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Weibull Parameter Estimates:   Beta=0.61888, Eta=1.1191e-05 

4.5 

x10" 

Figure 25.      Histogram of 1001 Saliences and the Weibull Fit 

The goodness-of-fit of the neural network saliences tests favorably for the Weibull 

distribution. For a 48 input, 20 hidden node, single output network with 1001 weights, 

the saliences fit-a Weibull distribution with a p-value > 0.25 as shown in Figure 25. The 

steep decline caused by ß = 0.62 allows for a satisfactory grouping of trivial saliences. 
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Weibull Probability Plot 
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Figure 26.      Weibull Probability Plot for Saliences of a Neural Network 

The linear fit of the probability plot for a smaller 16 input, 9 hidden node network 

in Figure 26 supports the acceptance of the Weibull distribution by the Anderson-Darling 

test at a level beyond 0.25. Provided ß is less than one, Weibull Pruning is an appropriate 

alternative to the Tukey-Kramer MCP. In Chapter IV, the efficacy of Weibull Pruning 

and Tukey-Kramer MCP is tested in an experiment for statistical measure. 
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IV.   Experiments 

The Monk's Problems provide a binary system of inputs for training and pruning neural 

networks. In Chapter III, the Monk's Problems finds the performance of Tukey-Kramer 

MCP and Pareto Pruning in comparison with OBS is not significantly different at a = 0.05. 

Meanwhile the efficiency of the two straddle OBS: Pareto pruning is more efficient, Tukey- 

Kramer MCP is less. However, in this experiment, Weibull distribution theory replaces 

the Pareto distribution for the single sample distribution estimates determining the subset 

elimination. A goodness-of-fit is included in Weibull Pruning prior to acting upon a subset 

of the saliences. In order to better generalize the characteristics between the methods 

developed in this dissertation and an established pruning method, a simulation experiment 

is proposed using factorial design procedures. 

4-1    Design of Experiment 

The number of inputs and hidden nodes to the single output response determines 

the overall network structure. For this simulation, the input vector lengths or number of 

inputs are 4 and 16. The hidden nodes vary as 3, 6, and 9. The combination of the two 

network attributes produce 5 different connection counts of 19, 37, 55, 109, and 163. The 

input vector data, x, are assumed to be normally distributed with mean, 0, and variance- 

covariance matrix, I (dimensions supportive of the input structure of the network). The 

decision of the underlying network complexity to obtain the training set outputs and the 

size of the training set comes from a previous experiment. The training set size is 256. The 

corresponding outputs are calculated from a network instilled with a reduced complexity. 

The reduced internal complexity is the percentage of connections initialized to zero, 25% 

for this simulation. Only the biases and weights connecting the inputs and hidden nodes 

are randomly chosen for an initial value of zero. The rest of the weights have a generated 

value assumed to be normally distributed with mean, 0, and variance-covariance matrix, 

I. Given x and w (the weights), the corresponding outputs are calculated to complete the 

training set. A test set is also produced in the same manner. 
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Before incorporating the Tukey-Kramer MCP and OBS procedures in the simula- 

tion, Weibull Pruning is considered at both the 0.1 and 0.2 CDF level to measure the 

aggressiveness of pruning within the range of Tukey-Kramer MCP. Given a simulation 

data set, the networks train to an error goal and Weibull Pruning proceeds independently 

at the two CDF levels. To accelerate data collection, the computer simulation is run on 

separate machines for each network architecture. For the six different network structures, 

ten replications provide responses of the prune count, floating point operations, initial 

MSE, training MSE, and test MSE for both CDF levels. The prune count is the number 

of weights eliminated from the network and measures the depth at which the pruning ap- 

proach is able to reduce the network complexity. The number of floating point operations 

is a measure of the computational burden of the algorithm; or conversely, the efficiency. 

The MSEs are the mean square error of the network's output response prior to pruning 

to assure a common start, and after pruning on both the training and test data set to 

measure the network's ability to remain trainable and predictable. The Weibull results 

determine which CDF level of Weibull Pruning will be used in comparison to the OBS and 

Tukey-Kramer MCP. 

With single Weibull CDF level and the other two pruning approaches being consid- 

ered, the simulation is a 2 * 32 factorial design as shown in Table 3. For each treatment 

combination, ten replications provide responses of the prune count, floating point opera- 

tions, initial MSE, training MSE, and test MSE for each pruning approach. 

4-2    Computational Resources 

Matlab's Neural Network Toolbox (13) is the computer program used to perform 

the simulation. Matlab's trainbpx function trains a feed-forward network with fast back- 

propagation. The speed of the backpropagation is enhanced by the use of momentum to 

find better solutions and adaptive learning rates to shorten training time. Momentum al- 

lows the network to respond to both the local gradient and previous trends in a fractional 

apportionment. The momentum of previous trends allows the network to roll through 

the local minimums that gradient descent would be content to rest. The resulting weight 

change is a convex combination where the momentum constant apportions a fraction of 
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Table 3.     Simulation Factorial Design 

Run Hidden Units Inputs Method 
1 3 4 OBS 
2 3 4 Weibull 
3 3 4 T-K MCP 
4 3 16 OBS 
5 3 16 Weibull 
6 3 16 T-K MCP 
7 6 4 OBS 
8 6 4 Weibull 
9 6 4 T-K MCP 
10 6 16 OBS 
11 6 16 Weibull 
12 6 16 T-K MCP 
13 9 4 OBS 
14 9 4 Weibull 
15 9 4 T-K MCP 
16 9 16 OBS 
17 9 16 Weibull 
18 9 16 T-K MCP 

the previous weight change with a fraction of the gradient descent weight change. If the 

new error exceeds the old error by 4%, the new weights are discarded and the learning 

rate, rj, is modified by a multiplier of 0.7. Otherwise, the new weights are kept, and if 

the new error is less than the old error, rj is increased 5%. The learning rate is increased 

during stable learning, and decreased when large error increases occur until stable learning 

resumes. Trainbpx uses batch training where the entire training set is fed through prior 

to weight changes. The function is designed for quick learning and avoiding local error 

minimums. 

Matlab's Statistical Toolbox provides various functions for estimating Weibull pa- 

rameters, inverting distribution functions, and providing probability plots. The toolbox 

provides various random number generators to create the data sets. Other functions within 

the toolbox overlap the greater capabilities of statistical software packages JMP (34) and 

Expert Fit (32) used in the analysis. 
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4-3    Experimental Results 

The following sections discuss the various contrasts and comparisons between the 

pruning methods in an attempt to reveal their appropriateness. 

4.3.1 Weibull Pruning Levels. Weibull Pruning checks for the goodness-of-fit of 

the saliences to a Weibull distribution and for the MLE of the shape parameter, ß, to be less 

than one before grouping the trivial many saliences in the steep decline of the left side of 

the distribution. The level of Weibull Pruning is intended to encompass the weights having 

salience not significantly different from the least salience that Tukey-Kramer MCP would 

prune using multiple comparison procedures. In contrast, Weibull Pruning uses one sample 

distribution of saliences, while Tukey-Kramer MCP requires B bootstrap samples to make 

the pruning decision. However, Tukey-Kramer MCP uses statistical inference to determine 

which saliences are no different than the least salience whose weight is subject to pruning. 

The decision to prune any of those saliences is equally valid and their corresponding weights 

are eliminated as a group. Weibull Pruning acknowledges the presence of a subset in the 

left side of the distribution but removes the weights with less insight. The level by which 

Weibull Pruning eliminates the weights may have an affect on the overall performance of 

the approach. To compare performance, the simulation performs Weibull Pruning at both 

the 10% and 20% level. 

For the 10 replications of each network structure, responses are recorded upon the 

completion of each CDF level of Weibull Pruning. The independent machines merge the 

response data to a single file for analysis. The responses from any given machine can be 

time sequenced, but not the total 120 values for any given response. Figure 27 presents a 

typical random pattern found for the ANOVA residuals from the simulation experiment. 

In this figure, the final test MSE is the response. The Durbin-Watson p-value = 0.1967 

which suggests an independence of replications within the treatment. 

Upon checking the assumption of normality, a typical residual pattern found is shown 

in Figure 28. In this figure, the final test MSE is the response. Although the Shapiro- 

Wilk W test rejects the null hypothesis for normality, the data has a symmetric normal- 

like distribution about zero. The studentized residuals display an appropriate number of 
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Figure 27.     Weibull Pruning: Time Sequence of Residuals for Test MSE 

outliers for the size of the sample. For 120 responses, one or two outliers are expected, 

which Figure 28 depicts. Since the F-test is robust against non-normality (as long as the 

underlying distribution is not highly skewed) the normality assumption is recognized in 

continuing with the AN OVA. 

Within the five measured responses, initial MSE is a control response to show that 

the various algorithms start with equal error. For the two levels of Weibull Pruning, the 

results show no difference in the trained networks' initial MSE at a = 0.05. This implies 

that both levels of Weibull Pruning start with an equivalent network. This is expected 

since the common data set is surveyed by the initialization routine to establish initial 

weights prior to training. From that starting point, the training program is consistent in 

obtaining a network with a common initial MSE. 

The ANOVA in Table 4 reveals that the final MSE for the training and test data 

sets are not affected by the two levels of Weibull Pruning, with p-values of 0.7939 and 
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Figure 28.      Weibull Pruning: Distribution of Residuals for Test MSE 

0.8911, respectively. The trainability and predictability of the network is mainly affected 

by the size of the initial network architecture. In both cases the interaction between the 

number of hidden nodes and number of inputs of the initial network is the dominant term 

of the AN OVA. The significance of the network architecture has already been discussed in 

Chapter II with regards to a network's ability to learn and predict. Thus, this result is not 

surprising. The AN OVA in Table 4 also reveals that percentage of Weibull Pruning has 

little effect on the number of weights pruned, with a p-value = 0.6078. Again, the model 
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Training MSE 

Effect Test" 
Source Nparrri:    DF ■Sum of Squares F Ratio Rföü*F 
HN -:-1       1 0.00005758: t:Ö450 "0:3089 
IN 1       1 0.00010884. i:97S3 ;Qd627 
HN*IN 1       1 0.00047861 8:6857 ,0.0039 
Percent Prune 1       1 0.00000378 0,0686 0,7939 
HN*Percent Prune 1        :1 0.00001064 0:i93t: omn 
IN*Percent Prune 1                 1: 0.00003030 DI55G0: 0:4599 
HN*IN*Percent Prune 1     1 0,00008641 /■t^eso 0.2l3t 

TestMSE 

Effect Test 
Source Nparm •DF/ Sum of Squares FRatio Prob>F 
HN 1 1 0.00015540 0.4048 05259 
IN 1 1 0.00068091 1.7736 0.1856 
HN*IN ;1 '1. 0.00151631 3:9496 0:0493 
Percent Prune 1 1 Ü.;Ü0Ö'ÖÖ72& 0.0188 0 8911 
HN*Percent Prune 1 1; o;ooooiT86: 0.0465 0:8296 
IN*Percerit Prune 1 X 0,00005949 0.1549 0;6946 
HN*IN*Percent Prune 1 A 0.00015365 0.4002 0.5283 

Weights Pruned 

EffectTest 
Source Nparm     DF Sum of Squares F.Ratio Prot»F 
HN i        t :S.3088 D.i 451 0:7040 
IN 1        1 :1:3886 0:0380 0.8459 
HN*IN 1        1 2620.8800 71.6489 <O001 
Percent Prune .1        1 J3.6875i' 0.2648 .0;6Ö78 
HN*Percent Prune 1        1 11 3882 0,3113 0:5780 
IN*Percent Prune :1        1 16.8583 D.4609 054036 
HN*1 N*Pereent Prune :1        1 33:8000 0.9240 JO 3385 

Table 4.     ANOVA of Resulting MSEs and Prune Count for Two Weibull Levels 

indicates that interaction between the initial number of inputs and hidden nodes plays the 

only significant role in the number of weights eventually pruned. 

The two pruning levels are not significant at a = 0.05 in the final network's per- 

formance or complexity. However, the ANOVA in Table 5 reveals the measure of floating 

point operations or efficiency of pruning does respond to the interaction between all three 
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Floating Point Operations 

Effect Test 
Source Nparrn DF 'Sum of Squares F Ratio Proro>F 
HM 1 1 140:2547 €,571* 00117 
IN 1 1 370.4572 i7;3571 xb'öift 
HN*IN !i 1 1363:1441 temft <0001 
Percent Prune 1 .4 10.0474 Ö.4TÖS ÜMm 
HNTPercent Prune 1 1 29.1396 1.3653 0.2451 
IWPercent Prune f\ % 87-5372; 4.1014 0.0452 
HN1N*Percent Prune 1 ■1 259.7821 s12:1:716 vQ;00D7 

Table 5.     ANOVA of Floating Point Operations for Two Weibull Levels 

factors: number of inputs, hidden nodes, and CDF level for the percentage pruned in an 

iteration. 

The CDF level is within the dominant interaction, so Figure 29 illustrates the con- 

ditional effect the number of inputs and CDF level have on floating point operations at a 

given number of hidden nodes. For 3 or 9 hidden nodes, the interaction is evident and to 

lesser extent for 6 hidden nodes, with a decreasing computational burden for the higher 

level of inputs and pruning. Likewise, Figure 30 shows an evident interaction conditioned 

on the number of inputs. The efficiency improves for 20% Weibull Pruning, especially as 

the initial complexity of the network increases. 

To further illustrate the difference in efficiency, the paired i-tests for the two levels of 

Weibull Pruning (family significance level of a = 0.05 for six Bonferroni comparisons) are 

shown in Table 6. The paired i-tests reveal that across the six combinations of the number 

of inputs and hidden nodes, Weibull Pruning at a CDF level of 20% requires significantly 

fewer floating point operations than at the 10% level for all but the 16 input, 6 hidden node 

network. In that case, the difference is in favor of 20% pruning, but it is not significant 

(recall Figures 29 and 30 show the least interaction for those respective levels). 

The scale of floating point operations increases with the initial network size. Larger 

networks may require more pruning, which benefits from a more aggressive pruning per- 

centage. So as networks increase in size, the level of Weibull Pruning plays an important 

role in the efficiency of network reduction. The 20% Weibull Pruning approach becomes 

the benchmark for further comparisons. 
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Figure 29.     Interaction of 10% and 20% Figure 30.     Interaction of 10% and 20% 
Weibull Pruning with 4 and 16 Inputs on Weibull Pruning with 3, 6, and 9 Hidden 
Floating Point Operations, Conditioned Nodes on Floating Point Operations, 
on Hidden Nodes Conditioned on Inputs 

Hidden Units Inputs Mean Difference t-Ratio Prob >|t | 
3 4 0.00831 6.8419 < .0001 
3 16 0.35097 5.9147 0.0002 
6 4 0.09890 9.5458 < .0001 
6 16 1.12926 2.9464 0.0163 
9 4 0.12151 6.0375 0.0002 
9 16 14.88033 5.8237 0.0003 

Table 6.     Weibull Pruning at 10% Vs 20%: Paired i-tests of Floating Point Operations 
for Various Network Stuctures (10% Weibull - 20% Weibull) 
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Figure 31.      Three Pruning Algorithms: Time Sequence of Residuals for Test MSE 

4.3.2 Competing Pruning Algorithms. Tukey-Kramer MCP decides which weights 

to prune based on the least salience and the correlated saliences not significantly different. 

Tukey-Kramer MCP uses B bootstrap samples in calculating mean saliences. The sampling 

requirement can be counterproductive if the network is not large enough to yield an ade- 

quate subset of weights to eliminate. However, of equal concern is whether Tukey-Kramer 

MCP compares in final network performance with other pruning algorithms. 

The salience distribution has a Pareto appearance, but not the fit. The saliences do 

fit a Weibull distribution; and so, Weibull Pruning uses the single sample's distribution 

characteristics to eliminate the trivial many saliences. The efficiency of Weibull Pruning at 

no cost to final network performance is subject to comparison. Chapter III justifies OBS 

as the classical pruning algorithm for comparison. 

The simulation of Table 3 with three levels of hidden nodes and two levels of inputs is 

analyzed for OBS, Tukey-Kramer MCP, and the Weibull level chosen in Section 4.3.1. For 

the 10 replications of each network structure, responses are recorded upon the completion 

of each pruning algorithm. The independent machines merge the response data to a single 

file for analysis. Again, the responses from any given machine can be time sequenced, 

but not the total 180 values for any given response. Figure 31 presents a typical random 
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Figure 32.      Three Pruning Algorithms: Distribution of Residuals for Test MSE 

pattern found for the ANOVA residuals from the simulation experiment. In this figure, 

the final test MSE is the response. As before, the analysis suggests an independence of 

replications within the treatment. 

On checking the assumption of normality, a typical residual pattern is shown in 

Figure 32. In this figure, the final test MSE is the response. Although the Shapiro-Wilk 

W test again rejects the null hypothesis for normality, the residuals still have a symmetric 

normal-like distribution about zero. The studentized residuals display a couple of outliers 
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TraihMSE 

Effect Test 
•Source Nparrn DF 3urn oTSquares F Ratio. Prob>F 

M» 1 1 0.00035951 63019 30:0096 

IN 1 "1 0:00051147 9.7624 0.0021 

HN*IN 1 -1: Ü.O0304277 S8I0T69 :*vbtifÖ1 
Algorithm 2 2' '0.00001060: 10.1011 !fl-.9039 
HN*Algorithm 2 :2 0.00002181 B2Ö81 ;0S123 
lN*Algorithm 2 2 0:00005450 Äoi 50:5954 
HNWAlgorithm 2 ■:2.. •0,00019876 1'a969 0:1532 

TestMSE 

Effect T< 3 St 

Source Nparm DF Sum of Squares F Ratio PlroW 
#f 1 t 0.00384472 :l6.3845 ^0:0015 
IN 1 1 0.01601701 *3.2614 *:00O1: 
HN*1N 1 i-v. 0.03654700 '98M23 sioom 
Algorithm .2 2 0.00001583 Ö0214 '#mM 
'HN*Algorithm ■2 t 0.00002739 J3:O370 ^0:9637 
|N*A[gorithm 2 .2 0.00008249 D.1114 J&8946 
:HN*lN*Algorithm 2  2' 0.00025648 fl:3464 0.7078 

Weights Pruned 

Effect Test 
Source Nparm     DF        SumofSquäres F Ratio Prob>F 
MM 1        1 392.832 12.3347 Ä0ÖÖ6 

IN 1       :lv 86.429 2.7138 :0:1014 
HN*IN 1       1: 30337.200 952.5736 W0001 
Algorithm 2       2 20.876 0.3277 0.7210 
H ^Algorithm ■2:        :2; 17.388 0.2730 0.7614 
IN*Algorithm 2       ^ 19.557 0.3070 0.7360 
HNWAIgorithm .2       :2:. 24.050 0.3776 ;Ö:686i: 

Table 7.      AN OVA of Resulting MSEs and Prune Count for Three Pruning Methods 

for the sample size of 180, as is expected. Given the robustness of the F-test as discussed 

earlier, the normality assumption is recognized in continuing with the ANOVA. 

The ANOVA in Table 7 reveals that the final MSE for the training and test data 

sets are not affected by the type of pruning algorithm, with p-values of 0.9039 and 0.9789, 

respectively. The trainability and predictability of the network is mainly affected by the 
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■F. loatihg Point 0 pe rations 

Effect Test; 
Source Nparrn TJF Siimofsquares F Ratio Profc»F 
Wi: 1 "-■'.■T' 28053.08 403778 Ä0Ö16 
IM ■3 1 88310:17 32:3546 «.0001 
HN*IN 1 ,f :3J04170.00 111.4392 < 0001 
Algorithm 2 :2 8554:05 1.5670 0.2117 
■HisPÄIgorithm 2 ■:ä 27723:89: 5.0797 50,0072 
IhfAlgorithrn '1 .■■:2: 93579.65 :17.i^25 <oooi 
HNWAIgorithrn 2 i>2: 34 3719:22 57.4689 *>00Q1 

Table 8.     AN OVA of Floating Point Operations for Three Pruning Methods 

size of the initial network architecture. In both cases the interaction between the number 

of hidden nodes and number of inputs of the initial network is the dominant term of the 

ANOVA. The ANOVA in Table 7 also reveals that the type of pruning has little effect 

on the number of weights pruned, with a p-value = 0.7210. Again, the model indicates 

that interaction between the initial number of inputs and hidden nodes plays the only 

significant role in the number of weights eventually pruned. The results are consistent 

with those found in the earlier simulation for the two Weibull CDF levels of pruning. 

The type of pruning algorithm is not significant at a = 0.05 in the final network's 

performance or complexity. However, the ANOVA of Table 8 reveals the amount of floating 

point operations or efficiency of pruning does respond to the interaction between all three 

factors: number of inputs, hidden nodes, and type of pruning algorithm. 

The pruning algorithm type is within the significant three-way interaction, so Fig- 

ure 33 illustrates the conditional effect the number of inputs and algorithms have on floating 

point operations at a given number of hidden nodes. For all hidden node conditions, the 

interaction is evident, with a decreasing computational burden for Weibull Pruning at the 

higher level of inputs. Likewise, Figure 34 shows an evident interaction conditioned on the 

number of inputs. The efficiency improves for Weibull Pruning, especially as the initial 

complexity of the network increases. 

To further illustrate the difference in efficiency, the paired i-tests between the three 

pruning algorithms (family significance level of a = 0.05 for eighteen Bonferroni compar- 
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Figure 33.     Interaction of OBS(A), 
Weibull Pruning(B), TK MCP(C) with 4 
and 16 Inputs on Floating Point 
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Figure 34.      Interaction of OBS(A), 
Weibull Pruning(B), TK MCP(C) with 
3, 6, and 9 Hidden Nodes on Floating 
Point Operations, Conditioned on Inputs 

isons) are performed similar to those in Table 6. The paired i-tests reveal that across 

the six combinations of the number of inputs and hidden nodes, Weibull Pruning at a 

CDF level of 20% requires significantly fewer floating point operations than either OBS 

or Tukey-Kramer MCP for all six network structures. Also, OBS requires significantly 

fewer floating point operations than Tukey-Kramer MCP for all six network structures. 

All eighteen paired i-tests have a p-value < 0.0001, further supporting the conclusions of 

the ANOVA: Weibull Pruning is significantly more efficient. 
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4-3.3 Summary of Results. The first simulation reveals that the CDF level for 

Weibull Pruning does not affect the final network's performance nor complexity. However, 

computational burden is significantly reduced (at a = 0.05) for the higher CDF level of 

pruning. The results suggest continuing to prune at the higher CDF level. 

The results of the experiments are also encouraging for multiple comparison pruning 

versus traditional iterative pruning. In comparison to OBS, Tukey-Kramer MCP and 

Weibull Pruning have no effect on the pruned network's performance. In contrast, the 

efficiency of pruning is significantly affected: Weibull Pruning has the advantage over both 

OBS and Tukey-Kramer MCP with significantly fewer floating point operations (at a = 

0.05). Tukey-Kramer MCP efficiency is dependent on the bootstrap sampling requirement 

that Weibull Pruning is able to avoid. However, for the computational price, Tukey-Kramer 

provides insight into the trivial saliences and the corresponding weights subject to removal. 

Chapter V provides conclusions and recommendations for multiple comparison pruning. 
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V.   Recommendations and Conclusions 

5.1 Introduction 

Large neural networks have the advantage of quick learning, but too many connec- 

tions may store the idiosyncrasies ofthat particular data set. The neural network's ability 

to predict future examples is hindered by the possible memorization of the training data 

set, such that the network may become unable to generalize data outside the set. Network 

pruning should be a judicious reduction in network size so that both training and test 

error are minimal. The computational burden of pruning algorithms is of concern in this 

research. Several approaches are devised to address more than one weight or one network 

model at a time. In order to remove more than one connection, the decision requires in- 

formation on the relevance of all the connections. Statistical inference procedures are the 

tool to allow subset elimination of connections. In this chapter, contributions advancing 

the process of neural network pruning are summarized and recommendations for future 

research are made. 

5.2 Summary 

This research begins with a review of neural network construction, salience measures 

of the weights within the networks, and statistical inference techniques that may apply to 

pruning a more efficient, better generalizing network. A review of neural network pruning 

details the computational intensity to produce the salience measures necessary to decide 

which weights to eliminate. The significant contribution of this research is the introduction 

of new concepts and methods in the field of multiple weight elimination of neural networks. 

A summary of research advances and contributions in this area of increasing the efficiency 

of neural network pruning follows. 

5.2.1 Review of Tukey-Kramer Multiple Comparison Pruning. A common theme 

amongst pruning algorithms is the role of salience measures in determining which weights 

are important. Weights with small saliences have little affect on error and are subject 

to pruning. However, sometimes obtaining saliences may be computationally burdensome. 

The efficiency of weight elimination becomes an issue for large networks posing a formidable 
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task. Given multiple saliences for the weights in question, multiple comparisons improve 

the decision making steps within the pruning algorithm. Rather than eliminate weights one 

at a time, comparatively small saliences are grouped and eliminated in batch. Batch elim- 

ination reduce the number of loops, retraining, or Hessian matrix inversions in a pruning 

algorithm. 

The Tukey-Kramer MCP considers the set of all pairwise comparisons of the hy- 

potheses in Equation 6, while accounting for the correlation between sample means. The 

simultaneous confidence interval in Equation 8 identifies the subset with the least salience 

given heteroscedastic, correlated components. The resulting subset of saliences identify 

the weights to be eliminated. 

Results favorably indicate that Tukey-Kramer MCP has no detrimental effect on 

the final performance of the neural network versus the traditional OBS pruning approach. 

Tukey-Kramer MCP requires fewer pruning cycles than OBS to reach the stopping crite- 

rion. However in this research, the network size works against the Tukey-Kramer MCP 

resampling requirement for mean comparisons. In order to obtain mean saliences, Tukey- 

Kramer MCP can require significantly more computations than OBS. 

5.2.2 Review of Weibull Pruning. For a large neural network, saliences have a 

precipitous decline from the left to suggest a trivial many exist in conjunction with a vital 

few. The Pareto-like drop is best described by a Weibull distribution, from the results of a 

goodness-of-fit test. The Weibull distribution uses the data to select the distribution and 

fit the parameters, avoiding the Tukey-Kramer MCP resampling requirement. 

The implementation of Weibull Pruning is a modification of existing pruning algo- 

rithms, where the Weibull distribution supports the decision to remove multiple connec- 

tions from the network. A goodness-of-fit test is part of the algorithm decision prior to 

pruning a subset of weights. If the Weibull distribution is rejected, the algorithm performs 

a single weight elimination. Likewise, the notion of trivial many saliences dictates subset 

pruning only when the shape estimator, ß, is less than one (see Figure 24). The MLEs of 

Equations 17 and 18 are used in the confidence interval of Equation 19 to group the triv- 

ial many saliences. Their weights are eliminated and the rest of the weights are updated 
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based on the optimal weight change prescribed by the largest salience within the subset 

eliminated. 

Provided ß is less than one, Weibull Pruning is an appropriate alternative to the 

Tukey-Kramer MCP. Results favorably indicate Weibull Pruning has no detrimental ef- 

fect on the final performance of the neural network versus Tukey-Kramer MCP or the 

traditional OBS pruning approach. Weibull Pruning requires fewer pruning cycles than 

OBS to reach the stopping criterion. More importantly, Weibull Pruning requires signifi- 

cantly fewer computations than OBS and Tukey-Kramer MCP at a = 0.05. 

5.3    Recommendations 

There are related research topics that could not be covered within the scope of this 

research effort. Two of the research topics could be pursued with worthwhile benefits. 

The first research topic is the application of Tukey-Kramer MCP and Weibull Prun- 

ing to ongoing neural network pruning research. OBS is a benchmark approach, but work 

continues in improving neural network capability to better generalize. Applying subset 

elimination of weights through statistical inference may improve any research effort under- 

way. 

The second research topic is the utility of Tukey-Kramer MCP on larger neural 

networks. Table 2 suggests that larger networks may benefit from Tukey-Kramer MCP in 

computational efficiency when the number of candidate weights for elimination offset the 

resampling burden. Hybrid pruning algorithms may use Tukey-Kramer MCP to judiciously 

prune the trivial many weights when the potential for a large subset is high. Another 

approach may consider an earlier stopping criterion when using Tukey-Kramer MCP to 

avoid counterproductive resampling when the potential for subset elimination is low. 
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